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We suggest a quantum stabilization method for the SU(2) ~-model, based on the 
constant-cutoff limit of the cutoff quanfization method developed by Balakrishna 
et al., which avoids the difficulties with the usual soliton boundary conditions 
pointed out by Iwasaki and Ohyama. We investigate the baryon number B = I 
sector of the model and show that after the collective coordinate quantization it 
admits a stable soliton solution which depends on a single dimensional arbitrary 
constant. We then apply this approach to the calculation of electric and magnetic 
static polarizabilities of octet hyperons in the bound-state SU(3)-soliton model 
for hyperons, with SU(3)-symmetry breaking. The results, with both seagull and 
dispersive contributions included, are compared with the predictions obtained 
using the complete Skyrme model. 

1. INTRODUCTION 

It was shown by Skyrme (1961, 1962) that baryons can be treated as 
solitons of a nonlinear chiral theory. The original Lagrangian of  the chiral 
SU(2) or-model is 

= ~ Tr #~U #~U § (1.1) 

where 

2 
U = ~ (or + i'r.'n) (1.2) 

is a unitary operator ( U U  § = 1) and F~ is the pion-decay constant. In (1.2) 
~r = tr(r) is a scalar meson field and rt = ~( r )  is the pion isotriplet. 
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The classical stability of the soliton solution to the chiral w-model 
Lagrangian requires an additional ad hoc term, proposed by Skyrme (1961, 
1962), to be added to (1.1), 

1 
~sk = 32e 2 Tr[U+O~ U, U+OvU] 2 (1.3) 

with a dimensionless parameter e and where [A, B] = AB - BA. It was 
shown by several authors [Adkins et al. (1983); see also Witten et al. (1979, 
1983a, b); for an extensive list of other references see Holzwarth and Schwe- 
singer (1986), Nyman and Riska (1990)] that, after collective quantization 
using the spherically symmetric ansatz 

U0(r) = exp[i't.roF(r)], ro = r/r (1.4) 

the chiral model, with both (1.1) and (1.3) included, gives good agreement 
with experiment for several important physical quantities. Thus it should be 
possible to derive the effective chiral Lagrangian, obtained as a sum of (1.1) 
and (1.3), from a more fundamental theory like QCD. On the other hand it 
is not easy to generate a term like (1.3) and give a clear physical meaning 
to the dimensionless constant e in (1.3) using QCD. 

Mignaco and Wulck (1989) (MW) indicated therefore the possibility to 
build a stable single-baryon (n = 1) quantum state in the simple chiral theory 
with the Skyrme stabilizing term (1.3) omitted. MW showed that the chiral 
angle F(r) is in fact a function of a dimensionless variable s = �89215 where 
X"(0) is an arbitrary dimensional parameter intimately connected to the usual 
stability argument against the soliton solution for the nonlinear tr-model 
Lagrangian. 

Using the adiabatically rotated ansatz U(r, t) = A(t)Uo(r)A+(t), where 
U0(r) is given by (1.4), MW obtained the total energy of the nonlinear tr- 
model soliton in the form 

"tr 1 1 [• 3 
E = ~- F~ ~ a + 2 ('tr/4)F~b J(J + 1) (1.5) 

where 

a = f o [ l s z ( - - ~ f  + 8 s i n 2 ( l ~ ) ] d s  

b =  ds-~-s sin 2 ~ 

and ~;(s) is defined by 

F(r) = F(s) = -n~r + �88 

(1.6) 

(1.7) 

(1.8) 
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The stable minimum of the function (1.5) with respect to the arbitrary dimen- 
sional scale parameter • is 

4 [ ~ ( 4 ) 2 a 3  1)] 1/' (1.9) E = -~ t ~  -~ J(J + 

Despite the nonexistence of the stable classical soliton solution to the 
nonlinear ~-model, it is possible, after the collective coordinate quantization, 
to build a stable chiral soliton at the quantum level, provided that there is a 
solution F = F(r) which satisfies the soliton boundary conditions, i.e., F(0) 
= - n ~ ,  F(~) = 0, such that the integrals (1.6) and (1.7) exist. 

However, as pointed out by Iwasaki and Ohyaraa (1989), the quantum 
stabilization method in the form proposed by Mignaco and Wulck 0989) is 
not correct, since in the simple ~-model the conditions F(0) = -n '~  and 
F(~) = 0 cannot be satisfied simultaneously. In other words, if the condition 
F(0) = -~r is satisfied, Iwasaki and Ohyama obtained numerically F(o0) --+ 
- ~ / 2 ,  and the chiral phase F = F(r) with correct boundary conditions does 
not exist. 

Iwasaki and Ohyama also proved analytically that both boundary condi- 
tions F(0) = -n'rr and F(oo) = 0 cannot be satisfied simultaneously. Introduc- 
ing a new variable y = l lr into the differential equation for the chiral angle 
F = F(r), we obtain 

d2F 1 
dy 2 = ~ sin 2F (1.10) 

There are two kinds of asymptotic solutions to equation (1.10) around the 
point y = 0, which is called a regular singular point if sin 2F ~ 2F. These 
solutions are 

m'ff 
F(y) = T + cy2' m = even integer (1.11) 

F(y) = - ~  + ~ cos ln(cy) + ~ , m = odd integer (1.12) 

where c is an arbitrary constant and a is a constant to be chosen appropriately. 
When F(0) = - n ~ ,  then we want to know which of these two solutions are 
approached by F(y) when y ~ 0 (r --> ~). In order to answer that question 
we multiply (1.10) by yEF'(y), integrate with respect to y from y to ~, and 
use F(0) = - n ~ .  Thus we get 

I; y2f ' (y)  + 2y[F'(y)]2dy = 1 - cos[2F(y)] (1.13) 
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Since the left-hand side of (1.13) is always positive, the value of F(y) is 
always limited to the interval n'rr - "tr < F(y) < n'rr + rr. Taking the limit 
y ---> 0, we find that (1.13) is reduced to 

i~2y[F'(y)] 2 dy = 1 - ( - 1 ) "  (1.14) 

where we used (1.11)-(1.12). Since the left-hand side of (1.14) is strictly 
positive, we must choose an odd integer m. Thus the solution satisfying F(0) 
= - n ~  approaches (1.12) and we have F(oo) 4: 0. The behavior of the 
solution (1.11) in the asymptotic region y ---> oo (r --> 0) is investigated by 
multiplying (1.10) 15y F'(y), integrating from 0 to y, and using (1.11). The 
result is 

[F,(y)] 2 _ 2 sin2F(y) f f  2 sin2F(y) 
)3 + y3 dy (1.15) 

From (1.15) we see that F ' (y)  ---> const as y ---> oo, which means that 
F(r) = llr for r ---> 0. This solution has a singularity at the origin and cannot 
satisfy the usual boundary condition F(0) = - n ~ .  

In Dalarsson (1991a, b, 1992), I suggested a method to resolve this 
difficulty by introducing a radial modification phase q~ = q~(r) in the ansatz 
(1.4) as follows: 

U(r) = exp[ix.roF(r) + iq~(r)], ro = rlr (1.16) 

Such a method provides a stable chiral quantum soliton, but the resulting 
model is an entirely noncovariant chiral model, different from the original 
chiral g-model. 

In the present paper we use the constant-cutoff limit of the cutoff quanti- 
zation method developed by Balakrishna et al. (1991; see also Jain et al., 
1989) to construct a stable chiral quantum soliton within the original chiral 
g-model. Then we apply this method to calculate electric and magnetic 
static polarizabilities of octet hyperons in the bound-state SU(3)-soliton model 
for hyperons, with SU(3)-symmetry breaking. The results, with both seagull 
and dispersive contributions included, are compared with the predictions 
obtained using the complete Skyrme model (Gobbi et al., 1996), showing 
that there is a general qualitative agreement between our results and the 
results of the complete Skyrme model (Gobbi et al., 1996). 

The reason the cutoff approach to the problem of the chiral quantum 
soliton works is connected to the fact that the solution F = F(r), which 
satisfies the boundary condition F(oo) = 0, is singular at r = 0. From the 
physical point of view the chiral quantum model is not applicable to the 
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region about the origin, since in that region there is a quark-dominated bag 
of the soliton. 

However, as argued in Balakrishna et al. (1991), when a cutoff �9 is 
introduced, the boundary conditions F(e) = -nax and F(oo) = 0 can be 
satisfied. Balakrishna et al. (1991) discuss an interesting analogy with the 
damped pendulum, showing clearly that as long as ~ > 0, there is a chiral 
phase F -- F(r) satisfying the above boundary conditions. The asymptotic 
forms of such a solution are given by Eq. (2.2) in Balakrishna et al. (1991). 
From these asymptotic solutions we immediately see that for ~ --> 0 the chiral 
phase diverges at the lower limit. 

Different applications of the constant-cutoff approach have been been 
discussed in Dalarsson (1993, 1995a-d, 1996a-c, 1997). 

2. CONSTANT-CUTOFF STABILIZATION 

Substituting (1.4) into (1.1), we obtain for the static energy of the 
chiral baryon 

Eo = ~ F$ dr r 2 
(,) L \ d r }  

In (2.1) we avoid the singularity of the profile function F = F(r) at the origin 
by introducing the cutoff ~(t) at the lower boundary of the space interval r 

[0, oo], i.e., by working with the interval r e [e, oo]. The cutoff itself is 
introduced following Balakrishna et al. (1991) as a dynamic time-depen- 
dent variable. 

From (2.1) we obtain the following differential equation for the profile 
function F = F(r): 

drr r2 ~rr = sin 2F (2.2) 

with the boundary conditions F(~) = - I t  and F(oo) = 0, such that the correct 
soliton number is obtained. The profile function F = F[r; e(t)] now depends 
implicitly on time t through e(t). Thus in the nonlinear or-model Lagrangian 

L = - ~  Tr(O~U O~U +) d3r (2.3) 

we use the ans~itze 

U(r, 0 = A(OUo(r, t)A+(t), U+(r, t) = A(t)U~(r, t)A§ (2.4) 
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where 

Uo(r, t) = expli't" roF[r;, e(t)] } (2.5) 

The static part of  the Lagrangian (2.3), i.e., 

L = -~ Tr(VU.VU +) d3r = -E0 (2.6) 

is equal to minus the energy Eo given by (2.1). The kinetic part of the 
Lagrangian is obtained using (2.4) with (2.5), and is equal to 

L = 16 J Tr(0oU OoU +) d3r = bx 2 Tr[0oA 0o.4"1 + c[.~(t)l 2 (2.7) 

where 

b = F~ sin2F y2dy, c = --if- F~ -~y y~ dy (2.8) 

with x(t) = [e(0] 3:2 and y = r/e. On the other hand, the static energy functional 
(2. I) can be rewritten as 

E0=ax 2/3, a=~F~ ~ +2sin2F dy (2.9) 

Thus the total Lagrangian of the rotating soliton is given by 

L = c5c 2 - ax ~ + 2bx2a~a ~ (2.10) 

where Tr(00A 0oA +) = 2a~a �9 and r (v = 0, I, 2, 3) are the collective 
coordinates defined as in Bhaduri (1988). In the limit of a time-independent 
cutoff (~ ---> 0) we can write 

OL 1 
H = Oa" a" - L = ax ~ + 2bx2a,,(x ~' = ax ~ + 2bx2 J(J  + 1) 

(2.11) 

where (j2) = j(j + I) is the eigenvalue of the square of the soliton angular 
momentum. A minimum of (2. I I) with respect to the parameter x is reached at 

x L3 J ( J ~  1) ::~ ~-i = ab ]1/4 J(J + l)J (2.12) 

The energy obtained by substituting (2.12) into (2. l I) is given by 

413a 3 -]I/4 
E = -~ - ~ J f J  + 1)J (2.13) 
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This result is identical to the result obtained by Mignaco and WulcL which 
is easily seen if we rescale the integrals a and b in such a way that a ---> (qr/ 
4)F~a and b ~ (ar/4)F~b and introducef~, = 2-3r2F~r. However, in the present 
approach, as shown in Balakrishna et al. (1991), there is a profile function 
F = F(y) with proper soliton boundary conditions F(1) = - ' t r  and F(oo) = 
0 and the integrals a, b, and c in (2.9)-(2.10) exist and are shown in Bala- 
kdshna et al. (1991) to be a = 0.78 GeV 2, b = 0.91 GeV 2, and c = 1.46 
GeV 2 for F~, = 186 MeV. 

Using (2.13), we obtain the same prediction for the mass ratio of the 
lowest states as Mignaco and Wulck (1989), which agrees rather well with 
the empirical mass ratio for the A-resonance and the nucleon. Furthermore, 
using the calculated values for the integrals a and b, we obtain the nucleon 
mass M ( N )  = 1167 MeV, which is about 25% higher than the empirical 
value of 939 MeV. However if we choose the pion-decay constant equal to 
F,, -- 150 MeV, we obtain a = 0.507 GeV 2 and b = 0.592 GeV 2, giving 
the exact agreement with the empirical nucleon mass. 

Finally, it is of interest to know bow large the constant cutoffs are for 
the above values of the pion-decay constant in order to che4ck if they are 
in the physically acceptable ballpark. Using (2.12), it is easily shown that 
for the nucleons (J = 1/2) the cutoffs are equal to 

f0.22 fm for F~ = 186 MeV 
= [0.27 fm for F~ = 150 MeV (2.14) 

From (2.14) we see that the cutoffs are too small to agree with the size of 
the nucleon (0.72 fm), as we should expect, since the cutoffs rather indicate 
the size of the quark-dominated bag in the center of the nucleon. Thus we 
find that the cutoffs are of reasonable physical size. Since the cutoff is 
proportional to F~ ~, we see that the pion-decay constant must be less than 
57 MeV in order to obtain a cutoff which exceeds the size of the nucleon. Such 
values of pion-decay constant are not relevant to any physical phenomena. 

3. THE SU(3)-EXTENDED CONSTANT-CUTOFF MODEL 

3.1. The Effective Interaction 

The Lagrangian density for the bound-state model of hyperons is, with 
Skyrme stabilizing term omitted and in the presence of the electromagnetic 
interaction, given by (Dalarsson, 1993, 1995a-d, 1996a-c, 1997; Bhaduri, 
1988) 
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2 = -i6 Tr D,U D*U § + - ~  rn, Tr(U + U § - 2) 

_ 1 (F 2 _ F2 ) Tr(1 - ,,/3ks)(U D~U D~U § + D~UD~U+U § 
48 

+ 1  2 2 (Frmr - F~n 2) Tr(l - v/3ks)(U + U § - 2) (3.1) 

where m~, and mr are pith and kaon masses, respectively, and Fr is the kaon 
weak-decay constant, with the empirical ratio to pion decay constant FK/F~ 

1.23. The first term in (3.1) is the usual e-model Lagrangian, while the 
remaining three terms are all chiral- and flavor-symmetry-breaking terms, 
present in the mesonic sector of the model. All flavor-symmetry-breaking 
terms in the effective Lagrangian (3.1) also break the chiral symmetry just 
as quark-mass terms do in the underlying QCD Lagrangian. 

In (3.1) the covariant derivatives are defined by 

O~U --> D~,U = O~U + ieA~[Q, U] (3.2) 

O~U+---> D~U + = O~U + + ieA~[Q, U +] (3.3) 

where A~ is the electromagnetic field, e is the elementary electric charge, Q 
is the electric charge operator defined by 

1( 1 ) 
Q = ~ k3 + - ~  X8 (3.4) 

and hi (i = 1 . . . . .  8) are standard SU(3) matrices. 
In addition to the action obtained using the Lagrangian (3.1), the Wess- 

Zumino action, with the electromagnetic interaction, of the form 

S~ z = _240,rr 2iNc I dsx e ~ ' ~  Tr[U+0~U U§ U+O~U U+O~U U+O~U] 

4 ~ 2  d4x e ~ { e A ~  Tr[Q(U+O,U U+O.U U+O~U 

- UO~U + UO, ,U + UO~U+)]  

- ie2A~O~A~, Tr[2Q2(U+OoU- UOoU +) + QU§ U+O~U 

- QUQU + UOf~U+]} (3.5) 

must be included in the total action of the system, where Nc is the number 
of colors in the underlying QCD. The Wess-Zumino action defines the 
topological properties of the model important for the quantization of the 
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solitons. In the SU(2) case the Wess-Zumino action vanishes identically and 
was therefore not present in the discussions of Sections 1 and 2. 

Using (3.1) and (3.5), one can write the total action, following Dalarsson 
(1993, 1995a-d, 1996a-c, 1997), as 

S = S(~ + I d4x e A ~ J ~ -  I d4x e2A~G~A~ (3.6) 

where 

J~ iF~ Tr[Q(U +O~'U i 
= + uo~u+) ]  + - ~  (F~2 _ F~) 

X Tr{(1 - ,,/~hs)([U, alu+a.u - u+a~u[u +, Q] 

+ [U +, Q]Ua~'U + - UO~U+[U, Q])} 

_ ~ e~al3 Tr[Q(U+OvU U+O,~U U+al3U - UO~U + Ud,,U + UO~U+)] 
48~r 2 

(3.7) 
G~ = g~  "16 ~ Tr(Q - U+QU) 2 + (F2x - F~) 

X Tr{(l - qf3ks)[(Q - U+QU)2U + + U(Q - U+QU)2]]) 

iN~ o 
+ - - e ~ , ~ p  Tr[(2Q 2 + QU+QU)U+O~U - (2Q 2 + QU+QU)UO~U+]Of3 

48,1T 2 
(3.8) 

In (3.6) S (~ is the action in the absence of the electromagnetic field, and 
in the following it will be treated according to the usual approach to the constant- 
cutoff approach to the bound-state soliton model found in Dalarsson (1993, 
1995a-d, 1996a-c, 1997). The meson-soliton field is written in the form 

U = x / ~ U x v / ~  (3.9) 

where U~, is the SU(3)-extension of the usual SU(2) skyrmion field used to 
describe the nucleon spectrum, and UK is the field describing the kaons 

r .  23a 
U, =[O, ,  01] ' Ur=exp~,~__~_[O+ K]}  (3.10) 

In (3.4), u~ is the usual SU(2)-skyrmion field, given by (1.4). The two- 
dimensional vector K in (3.10) is the kaon doublet 

K =  KO , K + =  [K- ~-o] (3.11) 
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3.2. The Hyperon Spectrum 

We now substitute (3.9), with U~ and Ux defined by (3.10), into the 
action S (~ of the kaon-soliton system and expand Ux to second order in 
kaon fields (3.11) to obtain the effective interaction Lagrangian density for 
the kaon-soliton system: 

= K+K + g+V2g + iX(r)(g+K - g + ~  - m 2 g + g  

1 - cos F 
- K§ r2 I . L K  + K§ (3.12) 

where L is the kaon orbital momentum and I is the total angular momentum of 
the rotating soliton. The term proportional to I -L  represents the kaon-soliton 
(iso)spin-orbit interaction. In (3.12) we introduced the quantities k(r) and 
vo(r) as follows: 

Nc sinZF dF 
k(r) = 2,r2F2 x r2 dr (3.13) 

l ( d F ~  z + cos F(1  - cos F)  F~gn~ 
V o = - ~ \ d r ]  r2 + ~ ( 1  - c o s F )  (3.14) 

The Hamiltonian density corresponding to the Lagrangian density (3.12) 
is given by 

= 1-1+II _ K + VZK - ik(r)(K+l-I - I-I+K) ___ m2K+K 

+ K + [  2 1 - c ~  ] r2 I - L  - vo(r) K + k2(r)K+K (3.15) 

The kaon field (3.11) may be decomposed into modes with strangeness 
number S = - 1  as (Dalarsson, 1993, 1995a-d, 1996a-c, 1997) 

K = ]~ [K'.(r)d~'-t/~ + + K,.(r)e-~'o"Cam] (3.16) 
m 

with d .  and/~+ being annihilation and creation operators for S = - 1  and S 
= + 1 modes, respectively. From (3.12) we obtain the wave equation for the 
S = - 1  mode wave functions K.(r) 

V2Km(r) + [vo(r) - 2 1 -  c~ F I .  ] r2 L K,(r) - m2Km(r) 

+ 2r + r = 0 (3.17) 
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where the commutation rules for creation and annihilation operators in (3.16) 
give the orthonormality condition for wave functions Km in the form 

f d3r [tOm tOn 2h(r)]K*K,~ (3.18) + + Bm~ 

Expanding the kaon wave functions Kin(r) in terms of vector spherical 
harmonics (Dalarsson, 1993, 1995a-d, 1996a-c, 1997) 

K(r) = ~ koz(r)Y~aL (3.19) 
a,L 

the wave equation (3.14) becomes a one-dimensional differential equation 
which can be found in Dalarsson (1993, 1995a-d, 1996a-c, 1997). 

In order to calculate the hyperon spectrum we must take into account 
the rotational modes of the soliton (Dalarsson, 1993, 1995a-d, 1996a-c, 
1997). The kaon and soliton fields are rotated according to 

K --> a(t)K (3.20) 

U ---> A(t)UA+(O (3.21) 

0]  322, 
where 

is an SU(2) subgroup of SU(3). The SU(2) rotation operator A(t) adds extra 
time-derivative terms to the Lagrangian. Using now the constant-cutoff stabili- 
zation procedure following Dalarsson (1993, 1995a-d, 1996a-c, 1997), we 
obtain the hyperon spectrum as follows: 

4{~  a3 
E = ~lSI + ~ ~- [cJ(J + 1) + (1 - c)I(l + 1) 

c(c - 1)ISI(ISI + 2)]} !/4 (3.23) 1 

where I, J, and S are the isospin, spin, and strangeness hyperon quantum 
numbers, respectively. 

3.3. Static Electric Polarizability 

The static electric polarizability is most easily extracted from the result 
for the shift in soliton energy in an external constant electric field/3 = ~Zo 
with A~ = ( -z~ ,  0, 0, 0) given by 

AE = - ~ s o  ~ (3.24) 
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The shift in soliton energy (3.24) is obtained by substituting the field A~ = 
(-zc~, 0, 0, 0) into the interaction part of the Lagrangian density; the seagull 
contribution to the static electric polarizability is obtained in the form 

= x(Fr F~) ~, ~ d3x z2(F~ Tr(Q - U+QU) 2 + ~ 2 _ 

• Tr{(1 - v/3hs)[(Q - U+QU)2U + + U(Q - U+QU)2]}) (3.25) 

The dispersive contribution ~to is believed to be much smaller than cts 
(Gobbi et al., 1996) and will therefore not be taken into account in the 
present paper. It should also be noted that there is no contribution from 
the Wess-Zumino term (3.5), because of the properties of the completely 
antisymmetric tensor e ~ .  Introducing the adiabatically rotated bound-state 
ansatz into (3.25), we obtain 

as  = [cq[1 -1(R33)2 ] -I- ISl[ot 2 + ot3(g33) 2] a t- ct4JgaR3a (3.26) 

+ otsJ3gR33] 

where 

4xr e2F2~5 dy y4 sin2F (3.27) 

1 e2~5 f f  Ot 2 -'~ " ~  dy y4k(y)2(1 + 4 Cos2F) (3.28) 

2 e2E5 or3 = -~  dy y4k(y)2 sin2F (3.29) 

2 e2~5 fl ~ a4 = - - ~  dy y4k(y)2(1 - 4 cos F)  (3.30) 

8 e2e5 dr  y4k(y)2 cos 2 2 ~t5 = - i 5  - (3.31) 

where e is the constant cutoff defined by 

r = - ~  [cJ(J + 1) + (1 - c)I( l  + 1) + ~ c(c - 1)lSl(ISI + 2)1 

(3.32) 

and Rat, are the rotation matrices defined by 

Rob = �89 "rbA +] (3.33) 
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Table L Electric Polarizabilities of Bound-State Octet Hyperons 

Particle as 

A 

2• 
20 
E o 

5 oq(A) + ot2(A) +-~3(A) 

-~ a,0:) + a2(~) + �89 a3(~) + �89 + ~ a5(~)] 
a,0;) + a2(2) + ~ 3 ( 2 )  

5 at(--.) + 2a2(- =) + 2 ~3(~) -- 2[a4(-=) + ~ as(--)] 

From (3.27)-(3.31) and (3.32) we see that elementary polarizabilities 
ot i (i = 1 . . . . .  5) are no longer universal for all bound-state octet hyperons, 
as in the case of the complete Skyrme model. The situation is similar to 
that of the constant-cutoff approach to magnetic moments of octet hyperons 
(Dalarsson et al., 1993, 1995a-d, 1996a-c, 1997). The elementary polariz- 
abilities are therefore different for different particle families (A, E, and E). 
Using now the standard angular momentum techniques, following Gobbi et 
al. (1996), we obtain the static electric polarizabilities of ground-state octet 
baryons given in Table I. 

3.4.  Stat ic  M a g n e t i c  Po lar i zab i l i t y  

The static magnetic polarizability is extracted from the result for the 
shift in soliton energy in an external constant magnetic field B = Bz0 with 
A,  = (0, �89 x r )g iven  by 

AE = -�89 B2 (3.34) 

The shift in soliton energy (3.34) is obtained by substituting the field A~ = 
(0, �89 x r) into the interaction part of the Lagrangian density, and now we 
must take into account both seagull and dispersive contributions. The qua- 
dratic part of the action (3.6) gives the seagull contribution in the form 

~ f  I 2 _ F 2) 13s = - d3x (r e - ze)(F 2 Tr(Q - U+QU) 2 + -y(FK 

•  - 3 ~ s ) [ ( Q -  U + QU) e U + +  U(Q - U+QU)2]}) 
(3.35) 

Introducing the adiabatically rotated bound-state ansatz into (3.35), 
we obtain 

[~S = [~1[ 1 + 1(R33)2] + IS1[[~2 + ~3(R33) 2] + ~4 JKaR3a + ~ 5JKR33 (3.36) 
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where 

~1 = --83-~1 (3.37) 

132 = -~-a2 - 4-I-a3 (3.38) 

133 = 4!~t3 (3.39) 

13, = -~-a4 - 4t--a5 (3.40) 

135 = 4~x5 (3.41) 

and ai (i = 1 . . . . .  5) is given by (3.27)-(3.31). Using the same techniques 
as in the case of the static electric polarizabilities in Table I, we obtain the 
seagull contributions to the static magnetic polarizabilities of ground-state 
octet baryons given in Table II. 

The linear part of the action (3.6), using second-order perturbation theory, 
gives a dispersive contribution to the static magnetic polarizability in the form 

e 2 ~ ,  I(HI.____~IH')____212 
(3.42) 

2M~ H,z,z, mu - mn, 

where H and H '  refer to different hyperon states, and where ixt~ is the magnetic 
moment operator of the hyperons, given in Dalarsson (1993, 1995a-d, 1996a- 
c, 1997) as 

Ixt/= IXlJ~ - 2(~2 -- IxalS1)R33 + 1~4J3 ~ (3.43) 

Following Dalarsson (1993, 1995a-d, 1996a-c, 1997) 

2MN e2 dy y2 sin2F dF 3%--fi Tyy (3.44) 

Ix2 = �89 (3.45) 

~3 = ~ M~e dy y2k(y)2 cos 2 ~ 1 - 4 sin 2 (3.46) 

4 II ~ 
1~4 = c~1 - g M~e 3 dy y2k(y)2 cos 2 F (3.47) 

Table II. Seagull Magnetic Polarizabilities of Bound-State Octet Hyperons 

Particle 13s 

A 

~o 
~_o 

10 
~I3,(A) + ~2(A) + ~3(A) 
~13,~) + ~2(~) + ~-1~3(~) +- �89 + ~l~s(~)] 
~ ( ~ )  + 1320:) + �89 
TI3,(~) + 2~(=) + .~133(_=) +_ .~[13,(=) + -~13s(--)] 
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Table 111. Electric Polarizabilities of Octet Hyperons (in 10 -4 fro) with Only the Seagull 
Contributions Taken into Account 

Ot s 

Particle r Set I ~ Set IP 

A 15.8 18.1 28.0 
2 + 17.1 18.8 29.4 
2-  15.2 17.4 26.5 
2 ~ 16.2 18.1 28.0 
~0 18.1 19.9 31.1 
_=- 16.7 18.0 27.3 

aFrom Gobbi et al. (1996). 

with (Dalarsson, 1993, 1995a-d, 1996a-c, 1997) 

l-I = 2~r F2~3 dy y2 sin2F 
3 

c = 1 - g to~. 3 d y  y2k(y)2 COS 2 "~ 

(3.48) 

(3.49) 

3.5.  N u m e r i c a l  Resul t s  for  H y p e r o n  Polarizabflities 

The numerical results for the electric and magnetic hyperon polarizabili- 
ties based on the model presented in the previous two sections, as well as 
the comparisons with the corresponding results obtained using the complete 
Skyrme model (Gobbi e t  a l . ,  1996), are given in Tables III and IV, respectively. 

From Tables III and IV we see that the present static electric and magnetic 
hyperon polarizabilities are close to those obtained from the complete Skyrme 
model (Gobbi e t  a l . ,  1996) for F~ = 186 MeV, while there are more significant 
differences compared to the results obtained in Gobbi e t  al .  (1996) for 

Table IV. Magnetic Polarizabilities of Octet Hyperons (in 10 -4 fm) 

~ot  
Particle [3, [3o ~ Set I ~ Set II ~ 

A -7.9 10.4 2.5 3.4 -1.3 
2 + -8.5 9.5 1.0 1.3 -3.9 
2-  -7.5 0.4 -7.1 -7.9 -12.5 
2 ~ -8.0 -3.6 -11.6 -12.7 -17.3 
~o -7.5 11.4 3.9 4.4 -1.8 
~-  -6.2 1.1 -5.1 -7.2 -12.4 

aFrom Gobbi et al. (1996). 
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F~, = 108 MeV. However, as order-of-magnitude estimates, the present results 
are relatively accurate. 

4. C O N C L U S I O N S  

We have shown the possibility of using the Skyrrne model to calculate 
the electromagnetic polarizabilities of hyperons without the use of the Skyrme 
stabilizing term, proportional to e -z, which makes both the analytic and 
numerical treatment more difficult. 

For such a simple model with only one arbitrary dimensional constant 
F~, which is chosen equal to its empirical value F~ = 186 MeV, the accuracy 
in the prediction of the static electric and magnetic polarizabilities of hyperons 
is rather satisfactory. The results are close to those obtained from the complete 
Skyrme model (Gobbi et al., 1996) for F~ = 186 MeV, while there are more 
significant differences compared to the results obtained in Gobbi et al. (1996) 
for F~ = 108 MeV. However, as order-of-magnitude estimates, the present 
results are relatively accurate. 

Finally, it should be noted that in the present paper we have assumed, 
as in Gobbi et al. (1996), that the seagull contributions to the Hamiltonian 
are equal to the seagull contributions to the Lagrangian with opposite sign. A 
rigorous justification for such a simple prescription can be found in Dalarsson 
(1993, 1995a-d, 1996a-c, 1997). 
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